Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Subtilosin-A

Gene

sboA

Organism
Bacillus subtilis (strain 168)
Status
Reviewed-Annotation score: Annotation score: 5 out of 5-Experimental evidence at protein leveli

Functioni

Has bacteriocidal activity against some Gram-positive bacteria such as Listeria, some species of Bacillus and E.faecium (PubMed:10572140, PubMed:19633086, PubMed:3936839). A single mutation (Thr-14-Ile) confers hemolytic activity against rabbit and human blood (PubMed:19633086).3 Publications

GO - Biological processi

Complete GO annotation...

Keywords - Molecular functioni

Antibiotic, Antimicrobial, Bacteriocin

Enzyme and pathway databases

BioCyciBSUB:BSU37350-MONOMER.

Protein family/group databases

TCDBi1.C.84.1.1. the subtilosin (subtilosin) family.

Names & Taxonomyi

Protein namesi
Recommended name:
Subtilosin-A
Alternative name(s):
Antilisterial bacteriocin subtilosin
Gene namesi
Name:sboA
Synonyms:sbo
Ordered Locus Names:BSU37350
OrganismiBacillus subtilis (strain 168)
Taxonomic identifieri224308 [NCBI]
Taxonomic lineageiBacteriaFirmicutesBacilliBacillalesBacillaceaeBacillus
Proteomesi
  • UP000001570 Componenti: Chromosome

Subcellular locationi

  • Secreted 1 Publication

GO - Cellular componenti

Complete GO annotation...

Keywords - Cellular componenti

Secreted

Pathology & Biotechi

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi1 – 88Missing : No thioether bonds formed. 1 Publication
Mutagenesisi12 – 121C → A in vitro no longer makes the first thioether cross-link, in vivo no cyclopeptide formed. 1 Publication
Mutagenesisi12 – 121C → S in vivo forms 2 thioether cross-links, no cyclopeptide formed. 1 Publication
Mutagenesisi14 – 141T → I in sboA1; protein has acquired hemolytic activity and is more effective against tested Gram-positive bacteria. 1 Publication
Mutagenesisi15 – 151C → A in vitro can no longer make the Cys-thioether cross-link, variable loss of the other 2 thioether cross-links, in vivo no cyclopeptide formed. 1 Publication
Mutagenesisi15 – 151C → S in vivo forms 2 thioether cross-links, no cyclopeptide formed. 1 Publication
Mutagenesisi21 – 211C → A in vitro no longer makes the second thioether cross-link, in vivo no cyclopeptide formed. 1 Publication
Mutagenesisi21 – 211C → S in vivo forms 2 thioether cross-links, no cyclopeptide formed. 1 Publication
Mutagenesisi30 – 301F → S in vivo forms 2 thioether cross-links, no cyclopeptide formed. 1 Publication
Mutagenesisi36 – 361T → S in vivo forms 2 thioether cross-links, no cyclopeptide formed. 1 Publication
Mutagenesisi39 – 391F → S in vivo forms 2 thioether cross-links, no cyclopeptide formed. 1 Publication
Mutagenesisi39 – 391F → Y in vivo forms 3 thioether cross-links, forms the cyclopeptide. 1 Publication

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Propeptidei1 – 881 PublicationPRO_0000002780
Peptidei9 – 4335Subtilosin-A1 PublicationPRO_0000002781Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Cross-linki9 ↔ 43Cyclopeptide (Asn-Gly)1 Publication
Cross-linki12 ↔ 392-cysteinyl-D-phenylalanine (Cys-Phe)2 Publications
Cross-linki15 ↔ 362-cysteinyl-D-allo-threonine (Cys-Thr)2 Publications
Cross-linki21 ↔ 302-cysteinyl-L-phenylalanine (Cys-Phe)2 Publications

Post-translational modificationi

This sactipeptide undergoes unique processing steps that include proteolytic cleavage after Glu-8, and covalent linkage of the alpha-amino of Asn-9 with the carboxyl of Gly-43 to form a cyclopeptide (PubMed:12696888, PubMed:22366720). Thioether cross-links are formed between cysteines and the alpha-carbons of other amino acids, Cys-12 to Phe-39, Cys-15 to Thr-36, and Cys-21 to Phe-30 (PubMed:12696888, PubMed:22366720). In forming these cross-links, Thr-36 and Phe-39 are converted to D-amino acids (PubMed:12696888). Propeptide cleavage and cyclopeptide formation only occur after all 3 thioether cross-links are formed (PubMed:22366720).2 Publications

Keywords - PTMi

D-amino acid, Thioether bond

Proteomic databases

PaxDbiO07623.

Expressioni

Developmental stagei

The production of subtilosin A begins at the end of vegetative growth and finishes before spore formation.1 Publication

Inductioni

Transcription is highly induced by oxygen limitation and is under dual and independent control of Spo0A-AbrB and ResDE.1 Publication

Interactioni

Protein-protein interaction databases

STRINGi224308.Bsubs1_010100020186.

Structurei

Secondary structure

1
43
Legend: HelixTurnBeta strand
Show more details
Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Turni12 – 154Combined sources
Turni23 – 264Combined sources
Helixi37 – 426Combined sources

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
EntryMethodResolution (Å)ChainPositionsPDBsum
1PXQNMR-A9-43[»]
ProteinModelPortaliO07623.
SMRiO07623. Positions 9-43.
ModBaseiSearch...
MobiDBiSearch...

Miscellaneous databases

EvolutionaryTraceiO07623.

Family & Domainsi

Sequence similaritiesi

Belongs to the bacteriocin class V family.Curated

Phylogenomic databases

OrthoDBiEOG66MR1C.

Family and domain databases

InterProiIPR021539. Subtilosin_A.
[Graphical view]
PfamiPF11420. Subtilosin_A. 1 hit.
[Graphical view]

Sequencei

Sequence statusi: Complete.

Sequence processingi: The displayed sequence is further processed into a mature form.

O07623-1 [UniParc]FASTAAdd to basket

« Hide

        10         20         30         40 
MKKAVIVENK GCATCSIGAA CLVDGPIPDF EIAGATGLFG LWG
Length:43
Mass (Da):4,325
Last modified:July 1, 1997 - v1
Checksum:i055A81DA0D378794
GO

Mass spectrometryi

Molecular mass is 3398.9 Da from positions 9 - 43. Determined by FAB. 1 Publication
Molecular mass is 3412.5 Da from positions 9 - 43. Determined by MALDI. The Thr-14-Ile mutant.1 Publication

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AJ430547 Genomic DNA. Translation: CAD23198.1.
Z97024 Genomic DNA. Translation: CAB09701.1.
AL009126 Genomic DNA. Translation: CAB15763.1.
PIRiA69704.
RefSeqiNP_391616.1. NC_000964.3.
WP_003222002.1. NZ_JNCM01000034.1.

Genome annotation databases

EnsemblBacteriaiCAB15763; CAB15763; BSU37350.
GeneIDi23411752.
938512.
KEGGibsu:BSU37350.
PATRICi18979508. VBIBacSub10457_3916.

Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AJ430547 Genomic DNA. Translation: CAD23198.1.
Z97024 Genomic DNA. Translation: CAB09701.1.
AL009126 Genomic DNA. Translation: CAB15763.1.
PIRiA69704.
RefSeqiNP_391616.1. NC_000964.3.
WP_003222002.1. NZ_JNCM01000034.1.

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
EntryMethodResolution (Å)ChainPositionsPDBsum
1PXQNMR-A9-43[»]
ProteinModelPortaliO07623.
SMRiO07623. Positions 9-43.
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

STRINGi224308.Bsubs1_010100020186.

Protein family/group databases

TCDBi1.C.84.1.1. the subtilosin (subtilosin) family.

Proteomic databases

PaxDbiO07623.

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsemblBacteriaiCAB15763; CAB15763; BSU37350.
GeneIDi23411752.
938512.
KEGGibsu:BSU37350.
PATRICi18979508. VBIBacSub10457_3916.

Phylogenomic databases

OrthoDBiEOG66MR1C.

Enzyme and pathway databases

BioCyciBSUB:BSU37350-MONOMER.

Miscellaneous databases

EvolutionaryTraceiO07623.

Family and domain databases

InterProiIPR021539. Subtilosin_A.
[Graphical view]
PfamiPF11420. Subtilosin_A. 1 hit.
[Graphical view]
ProtoNetiSearch...

Publicationsi

« Hide 'large scale' publications
  1. "Subtilosin A biosynthesis is conserved among two different classes of Bacillus subtilis strains."
    Stein T., Duesterhus S., Entian K.-D.
    Submitted (FEB-2002) to the EMBL/GenBank/DDBJ databases
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
    Strain: ATCC 6633 / PCI 219 / NRS 231.
  2. "The Bacillus subtilis genome from gerBC (311 degrees) to licR (334 degrees)."
    Presecan E., Moszer I., Boursier L., Cruz Ramos H., De La Fuente V., Hullo M.-F., Lelong C., Schleich S., Sekowska A., Song B.H., Villani G., Kunst F., Danchin A., Glaser P.
    Microbiology 143:3313-3328(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
    Strain: 168.
  3. "The complete genome sequence of the Gram-positive bacterium Bacillus subtilis."
    Kunst F., Ogasawara N., Moszer I., Albertini A.M., Alloni G., Azevedo V., Bertero M.G., Bessieres P., Bolotin A., Borchert S., Borriss R., Boursier L., Brans A., Braun M., Brignell S.C., Bron S., Brouillet S., Bruschi C.V.
    , Caldwell B., Capuano V., Carter N.M., Choi S.-K., Codani J.-J., Connerton I.F., Cummings N.J., Daniel R.A., Denizot F., Devine K.M., Duesterhoeft A., Ehrlich S.D., Emmerson P.T., Entian K.-D., Errington J., Fabret C., Ferrari E., Foulger D., Fritz C., Fujita M., Fujita Y., Fuma S., Galizzi A., Galleron N., Ghim S.-Y., Glaser P., Goffeau A., Golightly E.J., Grandi G., Guiseppi G., Guy B.J., Haga K., Haiech J., Harwood C.R., Henaut A., Hilbert H., Holsappel S., Hosono S., Hullo M.-F., Itaya M., Jones L.-M., Joris B., Karamata D., Kasahara Y., Klaerr-Blanchard M., Klein C., Kobayashi Y., Koetter P., Koningstein G., Krogh S., Kumano M., Kurita K., Lapidus A., Lardinois S., Lauber J., Lazarevic V., Lee S.-M., Levine A., Liu H., Masuda S., Mauel C., Medigue C., Medina N., Mellado R.P., Mizuno M., Moestl D., Nakai S., Noback M., Noone D., O'Reilly M., Ogawa K., Ogiwara A., Oudega B., Park S.-H., Parro V., Pohl T.M., Portetelle D., Porwollik S., Prescott A.M., Presecan E., Pujic P., Purnelle B., Rapoport G., Rey M., Reynolds S., Rieger M., Rivolta C., Rocha E., Roche B., Rose M., Sadaie Y., Sato T., Scanlan E., Schleich S., Schroeter R., Scoffone F., Sekiguchi J., Sekowska A., Seror S.J., Serror P., Shin B.-S., Soldo B., Sorokin A., Tacconi E., Takagi T., Takahashi H., Takemaru K., Takeuchi M., Tamakoshi A., Tanaka T., Terpstra P., Tognoni A., Tosato V., Uchiyama S., Vandenbol M., Vannier F., Vassarotti A., Viari A., Wambutt R., Wedler E., Wedler H., Weitzenegger T., Winters P., Wipat A., Yamamoto H., Yamane K., Yasumoto K., Yata K., Yoshida K., Yoshikawa H.-F., Zumstein E., Yoshikawa H., Danchin A.
    Nature 390:249-256(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
    Strain: 168.
  4. "Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis."
    Babasaki K., Takao T., Shimonishi Y., Kurahashi K.
    J. Biochem. 98:585-603(1985) [PubMed] [Europe PMC] [Abstract]
    Cited for: PROTEIN SEQUENCE OF 9-43, FUNCTION, SUBCELLULAR LOCATION, DEVELOPMENTAL STAGE, MASS SPECTROMETRY.
    Strain: 168.
  5. "Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin."
    Zheng G., Yan L.Z., Vederas J.C., Zuber P.
    J. Bacteriol. 181:7346-7355(1999) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
    Strain: 168 / JH642 and 22a.
  6. "Dual control of sbo-alb operon expression by the Spo0 and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis."
    Nakano M.M., Zheng G., Zuber P.
    J. Bacteriol. 182:3274-3277(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: TRANSCRIPTIONAL REGULATION.
    Strain: 168 / JH642.
  7. "Isolation of a variant of subtilosin A with hemolytic activity."
    Huang T., Geng H., Miyyapuram V.R., Sit C.S., Vederas J.C., Nakano M.M.
    J. Bacteriol. 191:5690-5696(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, MASS SPECTROMETRY, MUTAGENESIS OF THR-14.
    Strain: 168 / JH642.
  8. "The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A."
    Fluehe L., Knappe T.A., Gattner M.J., Schaefer A., Burghaus O., Linne U., Marahiel M.A.
    Nat. Chem. Biol. 8:350-357(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: CROSS-LINKS CYS-PHE AND CYS-THR, MUTAGENESIS OF 1-MET--GLU-8; CYS-12; CYS-15; CYS-21; PHE-30; THR-36 AND PHE-39.
    Strain: 168.
  9. "Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to alpha-carbons of phenylalanine and threonine."
    Kawulka K., Sprules T., McKay R.T., Mercier P., Diaper C.M., Zuber P., Vederas J.C.
    J. Am. Chem. Soc. 125:4726-4727(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: STRUCTURE BY NMR, CROSS-LINKS CYS-PHE AND CYS-THR.
  10. Vederas J.C.
    Unpublished observations (MAY-2003)
    Cited for: STEREOCHEMISTRY OF D-ALLO-THR-36.

Entry informationi

Entry nameiSBOA_BACSU
AccessioniPrimary (citable) accession number: O07623
Entry historyi
Integrated into UniProtKB/Swiss-Prot: January 10, 2003
Last sequence update: July 1, 1997
Last modified: February 17, 2016
This is version 98 of the entry and version 1 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programProkaryotic Protein Annotation Program

Miscellaneousi

Caution

PubMed:3936839 sequence does not report residues in positions 30 and 39 probably due to their modification, and reports a cyclic permutation of the peptide sequence.Curated

Keywords - Technical termi

3D-structure, Complete proteome, Direct protein sequencing, Reference proteome

Documents

  1. Bacillus subtilis
    Bacillus subtilis (strain 168): entries, gene names and cross-references to SubtiList
  2. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  3. SIMILARITY comments
    Index of protein domains and families

Similar proteinsi

Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into one UniRef entry.
90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.