Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

ATP synthase subunit f, mitochondrial

Gene

Atp5j2

Organism
Rattus norvegicus (Rat)
Status
Reviewed-Annotation score: Annotation score: 4 out of 5-Experimental evidence at protein leveli

Functioni

Mitochondrial membrane ATP synthase (F1F0 ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F1 - containing the extramembraneous catalytic core and F0 - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F1 is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F0 domain. Minor subunit located with subunit a in the membrane.

GO - Molecular functioni

GO - Biological processi

  • ATP biosynthetic process Source: UniProtKB-KW
  • ATP metabolic process Source: RGD
  • proton transport Source: UniProtKB-KW
Complete GO annotation...

Keywords - Biological processi

ATP synthesis, Hydrogen ion transport, Ion transport, Transport

Enzyme and pathway databases

ReactomeiR-RNO-163210. Formation of ATP by chemiosmotic coupling.

Names & Taxonomyi

Protein namesi
Recommended name:
ATP synthase subunit f, mitochondrial
Gene namesi
Name:Atp5j2
OrganismiRattus norvegicus (Rat)
Taxonomic identifieri10116 [NCBI]
Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeRattus
Proteomesi
  • UP000002494 Componenti: Chromosome 12

Organism-specific databases

RGDi1596067. Atp5j2.

Subcellular locationi

Topology

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Transmembranei57 – 7620HelicalSequence analysisAdd
BLAST

GO - Cellular componenti

Complete GO annotation...

Keywords - Cellular componenti

CF(0), Membrane, Mitochondrion, Mitochondrion inner membrane

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Initiator methionineiRemovedBy similarity
Chaini2 – 8887ATP synthase subunit f, mitochondrialPRO_0000416601Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Modified residuei2 – 21N-acetylalanineBy similarity
Modified residuei3 – 31PhosphoserineCombined sources
Modified residuei16 – 161N6-acetyllysineBy similarity

Keywords - PTMi

Acetylation, Phosphoprotein

Proteomic databases

PaxDbiD3ZAF6.
PeptideAtlasiD3ZAF6.
PRIDEiD3ZAF6.

PTM databases

iPTMnetiD3ZAF6.

Expressioni

Gene expression databases

GenevisibleiD3ZAF6. RN.

Interactioni

Subunit structurei

F-type ATPases have 2 components, CF1 - the catalytic core - and CF0 - the membrane proton channel. CF0 seems to have nine subunits: a, b, c, d, e, f, g, F6 and 8 (or A6L). Component of an ATP synthase complex composed of ATP5F1, ATP5G1, ATP5E, ATP5H, ATP5I, ATP5J, ATP5J2, MT-ATP6, MT-ATP8, ATP5A1, ATP5B, ATP5D, ATP5C1, ATP5O, ATP5L, USMG5 and MP68.1 Publication

Protein-protein interaction databases

STRINGi10116.ENSRNOP00000029426.

Family & Domainsi

Sequence similaritiesi

Belongs to the ATPase F chain family.Curated

Keywords - Domaini

Transmembrane, Transmembrane helix

Phylogenomic databases

eggNOGiKOG4092. Eukaryota.
ENOG4111PBN. LUCA.
GeneTreeiENSGT00510000046986.
InParanoidiD3ZAF6.
KOiK02130.
OMAiNKTPNAM.
OrthoDBiEOG73JKZ1.
PhylomeDBiD3ZAF6.
TreeFamiTF342865.

Family and domain databases

InterProiIPR019344. F1F0-ATPsyn_F_prd.
[Graphical view]
PANTHERiPTHR13080. PTHR13080. 1 hit.
PfamiPF10206. WRW. 1 hit.
[Graphical view]

Sequencei

Sequence statusi: Complete.

Sequence processingi: The displayed sequence is further processed into a mature form.

D3ZAF6-1 [UniParc]FASTAAdd to basket

« Hide

        10         20         30         40         50
MASIVPLKEK KLMEVKLREL PSWILMRDFT PSGIAGAFRR GYDRYYNKYI
60 70 80
NVRKGSISGI NMVLAAYVVF SYCISYKELK HERRRKYH
Length:88
Mass (Da):10,452
Last modified:April 20, 2010 - v1
Checksum:i3CF729DE8B3E7493
GO

Sequence databases

RefSeqiNP_001258046.1. NM_001271117.1.
UniGeneiRn.3543.

Genome annotation databases

EnsembliENSRNOT00000033537; ENSRNOP00000029426; ENSRNOG00000027049.
GeneIDi690441.
KEGGirno:690441.

Cross-referencesi

Sequence databases

RefSeqiNP_001258046.1. NM_001271117.1.
UniGeneiRn.3543.

3D structure databases

ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

STRINGi10116.ENSRNOP00000029426.

PTM databases

iPTMnetiD3ZAF6.

Proteomic databases

PaxDbiD3ZAF6.
PeptideAtlasiD3ZAF6.
PRIDEiD3ZAF6.

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsembliENSRNOT00000033537; ENSRNOP00000029426; ENSRNOG00000027049.
GeneIDi690441.
KEGGirno:690441.

Organism-specific databases

CTDi9551.
RGDi1596067. Atp5j2.

Phylogenomic databases

eggNOGiKOG4092. Eukaryota.
ENOG4111PBN. LUCA.
GeneTreeiENSGT00510000046986.
InParanoidiD3ZAF6.
KOiK02130.
OMAiNKTPNAM.
OrthoDBiEOG73JKZ1.
PhylomeDBiD3ZAF6.
TreeFamiTF342865.

Enzyme and pathway databases

ReactomeiR-RNO-163210. Formation of ATP by chemiosmotic coupling.

Miscellaneous databases

PROiD3ZAF6.

Gene expression databases

GenevisibleiD3ZAF6. RN.

Family and domain databases

InterProiIPR019344. F1F0-ATPsyn_F_prd.
[Graphical view]
PANTHERiPTHR13080. PTHR13080. 1 hit.
PfamiPF10206. WRW. 1 hit.
[Graphical view]
ProtoNetiSearch...

Publicationsi

« Hide 'large scale' publications
  1. "Genome sequence of the Brown Norway rat yields insights into mammalian evolution."
    Gibbs R.A., Weinstock G.M., Metzker M.L., Muzny D.M., Sodergren E.J., Scherer S., Scott G., Steffen D., Worley K.C., Burch P.E., Okwuonu G., Hines S., Lewis L., Deramo C., Delgado O., Dugan-Rocha S., Miner G., Morgan M.
    , Hawes A., Gill R., Holt R.A., Adams M.D., Amanatides P.G., Baden-Tillson H., Barnstead M., Chin S., Evans C.A., Ferriera S., Fosler C., Glodek A., Gu Z., Jennings D., Kraft C.L., Nguyen T., Pfannkoch C.M., Sitter C., Sutton G.G., Venter J.C., Woodage T., Smith D., Lee H.-M., Gustafson E., Cahill P., Kana A., Doucette-Stamm L., Weinstock K., Fechtel K., Weiss R.B., Dunn D.M., Green E.D., Blakesley R.W., Bouffard G.G., De Jong P.J., Osoegawa K., Zhu B., Marra M., Schein J., Bosdet I., Fjell C., Jones S., Krzywinski M., Mathewson C., Siddiqui A., Wye N., McPherson J., Zhao S., Fraser C.M., Shetty J., Shatsman S., Geer K., Chen Y., Abramzon S., Nierman W.C., Havlak P.H., Chen R., Durbin K.J., Egan A., Ren Y., Song X.-Z., Li B., Liu Y., Qin X., Cawley S., Cooney A.J., D'Souza L.M., Martin K., Wu J.Q., Gonzalez-Garay M.L., Jackson A.R., Kalafus K.J., McLeod M.P., Milosavljevic A., Virk D., Volkov A., Wheeler D.A., Zhang Z., Bailey J.A., Eichler E.E., Tuzun E., Birney E., Mongin E., Ureta-Vidal A., Woodwark C., Zdobnov E., Bork P., Suyama M., Torrents D., Alexandersson M., Trask B.J., Young J.M., Huang H., Wang H., Xing H., Daniels S., Gietzen D., Schmidt J., Stevens K., Vitt U., Wingrove J., Camara F., Mar Alba M., Abril J.F., Guigo R., Smit A., Dubchak I., Rubin E.M., Couronne O., Poliakov A., Huebner N., Ganten D., Goesele C., Hummel O., Kreitler T., Lee Y.-A., Monti J., Schulz H., Zimdahl H., Himmelbauer H., Lehrach H., Jacob H.J., Bromberg S., Gullings-Handley J., Jensen-Seaman M.I., Kwitek A.E., Lazar J., Pasko D., Tonellato P.J., Twigger S., Ponting C.P., Duarte J.M., Rice S., Goodstadt L., Beatson S.A., Emes R.D., Winter E.E., Webber C., Brandt P., Nyakatura G., Adetobi M., Chiaromonte F., Elnitski L., Eswara P., Hardison R.C., Hou M., Kolbe D., Makova K., Miller W., Nekrutenko A., Riemer C., Schwartz S., Taylor J., Yang S., Zhang Y., Lindpaintner K., Andrews T.D., Caccamo M., Clamp M., Clarke L., Curwen V., Durbin R.M., Eyras E., Searle S.M., Cooper G.M., Batzoglou S., Brudno M., Sidow A., Stone E.A., Payseur B.A., Bourque G., Lopez-Otin C., Puente X.S., Chakrabarti K., Chatterji S., Dewey C., Pachter L., Bray N., Yap V.B., Caspi A., Tesler G., Pevzner P.A., Haussler D., Roskin K.M., Baertsch R., Clawson H., Furey T.S., Hinrichs A.S., Karolchik D., Kent W.J., Rosenbloom K.R., Trumbower H., Weirauch M., Cooper D.N., Stenson P.D., Ma B., Brent M., Arumugam M., Shteynberg D., Copley R.R., Taylor M.S., Riethman H., Mudunuri U., Peterson J., Guyer M., Felsenfeld A., Old S., Mockrin S., Collins F.S.
    Nature 428:493-521(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
    Strain: Brown Norway.
  2. "Identification of two proteins associated with mammalian ATP synthase."
    Meyer B., Wittig I., Trifilieff E., Karas M., Schaegger H.
    Mol. Cell. Proteomics 6:1690-1699(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: IDENTIFICATION BY MASS SPECTROMETRY, IDENTIFICATION IN THE ATP SYNTHASE COMPLEX.
  3. "Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues."
    Lundby A., Secher A., Lage K., Nordsborg N.B., Dmytriyev A., Lundby C., Olsen J.V.
    Nat. Commun. 3:876-876(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-3, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].

Entry informationi

Entry nameiATPK_RAT
AccessioniPrimary (citable) accession number: D3ZAF6
Entry historyi
Integrated into UniProtKB/Swiss-Prot: April 18, 2012
Last sequence update: April 20, 2010
Last modified: July 6, 2016
This is version 45 of the entry and version 1 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families

Similar proteinsi

Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into one UniRef entry.
90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.