Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
1 to 25 of 33  Show
  1. 1
    "The sequence of the human genome."
    Venter J.C., Adams M.D., Myers E.W., Li P.W., Mural R.J., Sutton G.G., Smith H.O., Yandell M., Evans C.A., Holt R.A., Gocayne J.D., Amanatides P., Ballew R.M., Huson D.H., Wortman J.R., Zhang Q., Kodira C.D., Zheng X.H.
    , Chen L., Skupski M., Subramanian G., Thomas P.D., Zhang J., Gabor Miklos G.L., Nelson C., Broder S., Clark A.G., Nadeau J., McKusick V.A., Zinder N., Levine A.J., Roberts R.J., Simon M., Slayman C., Hunkapiller M., Bolanos R., Delcher A., Dew I., Fasulo D., Flanigan M., Florea L., Halpern A., Hannenhalli S., Kravitz S., Levy S., Mobarry C., Reinert K., Remington K., Abu-Threideh J., Beasley E., Biddick K., Bonazzi V., Brandon R., Cargill M., Chandramouliswaran I., Charlab R., Chaturvedi K., Deng Z., Di Francesco V., Dunn P., Eilbeck K., Evangelista C., Gabrielian A.E., Gan W., Ge W., Gong F., Gu Z., Guan P., Heiman T.J., Higgins M.E., Ji R.R., Ke Z., Ketchum K.A., Lai Z., Lei Y., Li Z., Li J., Liang Y., Lin X., Lu F., Merkulov G.V., Milshina N., Moore H.M., Naik A.K., Narayan V.A., Neelam B., Nusskern D., Rusch D.B., Salzberg S., Shao W., Shue B., Sun J., Wang Z., Wang A., Wang X., Wang J., Wei M., Wides R., Xiao C., Yan C., Yao A., Ye J., Zhan M., Zhang W., Zhang H., Zhao Q., Zheng L., Zhong F., Zhong W., Zhu S., Zhao S., Gilbert D., Baumhueter S., Spier G., Carter C., Cravchik A., Woodage T., Ali F., An H., Awe A., Baldwin D., Baden H., Barnstead M., Barrow I., Beeson K., Busam D., Carver A., Center A., Cheng M.L., Curry L., Danaher S., Davenport L., Desilets R., Dietz S., Dodson K., Doup L., Ferriera S., Garg N., Gluecksmann A., Hart B., Haynes J., Haynes C., Heiner C., Hladun S., Hostin D., Houck J., Howland T., Ibegwam C., Johnson J., Kalush F., Kline L., Koduru S., Love A., Mann F., May D., McCawley S., McIntosh T., McMullen I., Moy M., Moy L., Murphy B., Nelson K., Pfannkoch C., Pratts E., Puri V., Qureshi H., Reardon M., Rodriguez R., Rogers Y.H., Romblad D., Ruhfel B., Scott R., Sitter C., Smallwood M., Stewart E., Strong R., Suh E., Thomas R., Tint N.N., Tse S., Vech C., Wang G., Wetter J., Williams S., Williams M., Windsor S., Winn-Deen E., Wolfe K., Zaveri J., Zaveri K., Abril J.F., Guigo R., Campbell M.J., Sjolander K.V., Karlak B., Kejariwal A., Mi H., Lazareva B., Hatton T., Narechania A., Diemer K., Muruganujan A., Guo N., Sato S., Bafna V., Istrail S., Lippert R., Schwartz R., Walenz B., Yooseph S., Allen D., Basu A., Baxendale J., Blick L., Caminha M., Carnes-Stine J., Caulk P., Chiang Y.H., Coyne M., Dahlke C., Mays A., Dombroski M., Donnelly M., Ely D., Esparham S., Fosler C., Gire H., Glanowski S., Glasser K., Glodek A., Gorokhov M., Graham K., Gropman B., Harris M., Heil J., Henderson S., Hoover J., Jennings D., Jordan C., Jordan J., Kasha J., Kagan L., Kraft C., Levitsky A., Lewis M., Liu X., Lopez J., Ma D., Majoros W., McDaniel J., Murphy S., Newman M., Nguyen T., Nguyen N., Nodell M., Pan S., Peck J., Peterson M., Rowe W., Sanders R., Scott J., Simpson M., Smith T., Sprague A., Stockwell T., Turner R., Venter E., Wang M., Wen M., Wu D., Wu M., Xia A., Zandieh A., Zhu X.
    Science 291:1304-1351(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
    Category: Sequences.
    Source: UniProtKB/TrEMBL (unreviewed).

    This publication is cited by 8176 other entries.

  2. 2
    Category: Sequences.
    Source: UniProtKB/TrEMBL (unreviewed).
  3. 3
    Category: Sequences.
    Source: UniProtKB/TrEMBL (unreviewed).

    This publication is cited by 1021 other entries.

  4. 4
    "Transcription enhancer factor-1-related factor-transgenic mice develop cardiac conduction defects associated with altered connexin phosphorylation."
    Chen H.H., Baty C.J., Maeda T., Brooks S., Baker L.C., Ueyama T., Gursoy E., Saba S., Salama G., London B., Stewart A.F.
    Circulation 110:2980-2987(2004) [PubMed] [Europe PMC] [Abstract]
    Annotation: Constitutive activation of alpha1-adrenergic signaling through the RTEF-1 transcription factor results in chronic elevation of PP1beta expression and connexin dephosphorylation. This mechanism may underlie some defects in cardiac conduction.Imported.
    Source: GeneRIF:7004.

    This publication is mapped to 4 other entries.

  5. 5
    "Identification of novel alternatively spliced isoforms of RTEF-1 within human ocular vascular endothelial cells and murine retina."
    Appukuttan B., McFarland T.J., Davies M.H., Atchaneeyasakul L.O., Zhang Y., Babra B., Pan Y., Rosenbaum J.T., Acott T., Powers M.R., Stout J.T.
    Invest. Ophthalmol. Vis. Sci. 48:3775-3782(2007) [PubMed] [Europe PMC] [Abstract]
    Annotation: Novel RTEF-1 transcripts are present within human ocular vascular endothelial cells and mouse neural retina during normal and retinopathy of prematurity development and alternatively spliced products are produced under hyperoxic and hypoxic conditionsImported.
    Source: GeneRIF:7004.

    This publication is mapped to 7 other entries.

  6. 6
    "Identification of NR5A1 (SF-1/AD4BP) gene expression modulators by large-scale gain and loss of function studies."
    Sakai N., Terami H., Suzuki S., Haga M., Nomoto K., Tsuchida N., Morohashi K., Saito N., Asada M., Hashimoto M., Harada D., Asahara H., Ishikawa T., Shimada F., Sakurada K.
    J. Endocrinol. 198:489-497(2008) [PubMed] [Europe PMC] [Abstract]
    Annotation: The gain of function studies indicated that TEA domain family member 4 activate NR5A1 gene expression.Imported.
    Source: GeneRIF:7004.

    This publication is mapped to 35 other entries.

  7. 7
    "Transcription enhancer factor 3 (TEF3) mediates the expression of Down syndrome candidate region 1 isoform 1 (DSCR1-1L) in endothelial cells."
    Liu X., Zhao D., Qin L., Li J., Zeng H.
    J. Biol. Chem. 283:34159-34167(2008) [PubMed] [Europe PMC] [Abstract]
    Annotation: TEF3 mediates the expression of Down syndrome candidate region 1 isoform 1 (DSCR1-1L) in endothelial cellsImported.
    Source: GeneRIF:7004.

    This publication is mapped to 12 other entries.

  8. 8
    "The endothelium-dependent effect of RTEF-1 in pressure overload cardiac hypertrophy: role of VEGF-B."
    Xu M., Jin Y., Song Q., Wu J., Philbrick M.J., Cully B.L., An X., Guo L., Gao F., Li J.
    Cardiovasc. Res. 90:325-334(2011) [PubMed] [Europe PMC] [Abstract]
    Annotation: the RTEF-1-driven increase of VEGF-B plays an important role in communication between the endothelium and myocardiumImported.
    Source: GeneRIF:7004.

    This publication is mapped to 10 other entries.

  9. 9
    "Requirement of the nuclear localization of transcription enhancer factor 3 for proliferation, migration, tube formation, and angiogenesis induced by vascular endothelial growth factor."
    Liu X., Zhao D., James L., Li J., Zeng H.
    FASEB J. 25:1188-1197(2011) [PubMed] [Europe PMC] [Abstract]
    Annotation: TEF3 mainly its nuclear localization is required for VEGF-A(165)-induced endothelial proliferation migration tube formation and in vivo Matrigel angiogenesis.Imported.
    Source: GeneRIF:7004.

    This publication is mapped to 4 other entries.

  10. 10
    "RTEF-1, an upstream gene of hypoxia-inducible factor-1alpha, accelerates recovery from ischemia."
    Jin Y., Wu J., Song X., Song Q., Cully B.L., Messmer-Blust A., Xu M., Foo S.Y., Rosenzweig A., Li J.
    J. Biol. Chem. 286:22699-22705(2011) [PubMed] [Europe PMC] [Abstract]
    Annotation: RTEF-1 as a regulator of HIF-1alpha transcriptionImported.
    Source: GeneRIF:7004.

    This publication is mapped to 13 other entries.

  11. 11
    "Related transcriptional enhancer factor 1 increases endothelial-dependent microvascular relaxation and proliferation."
    Messmer-Blust A.F., Zhang C., Shie J.L., Song Q., He P., Lubenec I., Liu Y., Sellke F., Li J.
    J. Vasc. Res. 49:249-259(2012) [PubMed] [Europe PMC] [Abstract]
    Annotation: RTEF-1 plays an important role in FGFR1- stimulated vasodilatation.Imported.
    Source: GeneRIF:7004.

    This publication is mapped to 4 other entries.

  12. 12
    "Endothelial cells require related transcription enhancer factor-1 for cell-cell connections through the induction of gap junction proteins."
    An X., Jin Y., Philbrick M.J., Wu J., Messmer-Blust A., Song X., Cully B.L., He P., Xu M., Duffy H.S., Li J.
    Arterioscler. Thromb. Vasc. Biol. 32:1951-1959(2012) [PubMed] [Europe PMC] [Abstract]
    Annotation: Blocking connexin 43 function inhibited RTEF-1-induced endothelial cell connections and aggregationImported.
    Source: GeneRIF:7004.

    This publication is mapped to 9 other entries.

  13. 13
    "The related transcriptional enhancer factor-1 isoform, TEAD4(216), can repress vascular endothelial growth factor expression in mammalian cells."
    Appukuttan B., McFarland T.J., Stempel A., Kassem J.B., Hartzell M., Zhang Y., Bond D., West K., Wilson R., Stout A., Pan Y., Ilias H., Robertson K., Klein M.L., Wilson D., Smith J.R., Stout J.T.
    PLoS ONE 7:e31260-e31260(2012) [PubMed] [Europe PMC] [Abstract]
    Annotation: High TEAD4 expression is associated with Age-Related Macular Degeneration.Imported.
    Source: GeneRIF:7004.

    This publication is mapped to 4 other entries.

  14. 14
    "RTEF-1 attenuates blood glucose levels by regulating insulin-like growth factor binding protein-1 in the endothelium."
    Messmer-Blust A.F., Philbrick M.J., Guo S., Wu J., He P., Guo S., Li J.
    Circ. Res. 111:991-1001(2012) [PubMed] [Europe PMC] [Abstract]
    Annotation: These results show that RTEF-1-stimulated IGFBP-1 expression may be central to the mechanism by which RTEF-1 attenuates blood glucose levels.Imported.
    Source: GeneRIF:7004.

    This publication is mapped to 10 other entries.

  15. 15
    "TFF3 and survivin expressions associate with a lower survival rate in gastric cancer."
    Meng J.R., Tang H.Z., Zhou K.Z., Shen W.H., Guo H.Y.
    Clin. Exp. Med. 13:297-303(2013) [PubMed] [Europe PMC] [Abstract]
    Annotation: These data suggest that TFF3 and survivin expressions play a vital role in gastric cancer development and these two proteins are important markers for prognosis in gastric cancer.Imported.
    Source: GeneRIF:7004.

    This publication is mapped to 14 other entries.

  16. 16
    "YAP/TEAD-mediated transcription controls cellular senescence."
    Xie Q., Chen J., Feng H., Peng S., Adams U., Bai Y., Huang L., Li J., Huang J., Meng S., Yuan Z.
    Cancer Res. 73:3615-3624(2013) [PubMed] [Europe PMC] [Abstract]
    Annotation: Data indicate that knockdown of TEAD1/3/4 induces an almost identical cellular senescent phenotype as YAP silencing.Imported.
    Source: GeneRIF:7004.

    This publication is mapped to 14 other entries.

  17. 17
    "The TEAD4-YAP/TAZ protein-protein interaction: expected similarities and unexpected differences."
    Hau J.C., Erdmann D., Mesrouze Y., Furet P., Fontana P., Zimmermann C., Schmelzle T., Hofmann F., Chene P.
    Chembiochem 14:1218-1225(2013) [PubMed] [Europe PMC] [Abstract]
    Annotation: convergent optimization of the YAP/TAZ TEAD binding site suggests that the similarity in the affinities of binding of YAP to TEAD and of TAZ to TEAD is important for Hippo pathway functionality.Imported.
    Source: GeneRIF:7004.

    This publication is mapped to 5 other entries.

  18. 18
    "Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer."
    Lim B., Park J.L., Kim H.J., Park Y.K., Kim J.H., Sohn H.A., Noh S.M., Song K.S., Kim W.H., Kim Y.S., Kim S.Y.
    Carcinogenesis 35:1020-1027(2014) [PubMed] [Europe PMC] [Abstract]
    Annotation: the multilevel perturbations of TEAD4 at epigenetic transcriptional and posttranslational levels may contribute to GC development.Imported.
    Source: GeneRIF:7004.

    This publication is mapped to 4 other entries.

  19. 19
    "Endothelial differentiation gene-1, a new downstream gene is involved in RTEF-1 induced angiogenesis in endothelial cells."
    He P., Philbrick M.J., An X., Wu J., Messmer-Blust A.F., Li J.
    PLoS ONE 9:e88143-e88143(2014) [PubMed] [Europe PMC] [Abstract]
    Annotation: Edg-1 is a potential target gene of RTEF-1 and is involved in RTEF-1-induced angiogenesis in endothelial cells.Imported.
    Source: GeneRIF:7004.

    This publication is mapped to 7 other entries.

  20. 20
    "Genetic variants in Hippo pathway genes YAP1, TEAD1 and TEAD4 are associated with melanoma-specific survival."
    Yuan H., Liu H., Liu Z., Zhu D., Amos C.I., Fang S., Lee J.E., Wei Q.
    Int. J. Cancer 137:638-645(2015) [PubMed] [Europe PMC] [Abstract]
    Annotation: Our findings suggest that genetic variants of Hippo pathway genes particularly YAP1 rs11225163 TEAD1 rs7944031 and TEAD4 rs1990330 may independently or jointly modulate survival of CM patients.Imported.
    Source: GeneRIF:7004.

    This publication is mapped to 6 other entries.

  21. 21
    "Characterization of the transcriptional activation domains of human TEF3-1 (transcription enhancer factor 3 isoform 1)."
    Qiao C., Jiang Y., Deng C., Huang Z., Teng K., Chen L., Liu X.
    Arch. Biochem. Biophys. 569:54-61(2015) [PubMed] [Europe PMC] [Abstract]
    Annotation: the peptides TEF3-11-66 and TEF3-1197-434 functioned as two independent activation domains suggesting that N-terminal domain of TEF3-1 also has transcriptional activation capacityImported.
    Source: GeneRIF:7004.

    This publication is mapped to 4 other entries.

  22. 22
    "The interplay between TEAD4 and KLF5 promotes breast cancer partially through inhibiting the transcription of p27Kip1."
    Wang C., Nie Z., Zhou Z., Zhang H., Liu R., Wu J., Qin J., Ma Y., Chen L., Li S., Chen W., Li F., Shi P., Wu Y., Shen J., Chen C.
    Oncotarget 6:17685-17697(2015) [PubMed] [Europe PMC] [Abstract]
    Annotation: TEAD4 and KLF5 in collaboration promoted triple negative breast cancer cell proliferation and tumor growth in part by inhibiting p27 gene transcriptionImported.
    Source: GeneRIF:7004.

    This publication is mapped to 22 other entries.

  23. 23
    "Hippo Component TAZ Functions as a Co-repressor and Negatively Regulates DeltaNp63 Transcription through TEA Domain (TEAD) Transcription Factor."
    Valencia-Sama I., Zhao Y., Lai D., Janse van Rensburg H.J., Hao Y., Yang X.
    J. Biol. Chem. 290:16906-16917(2015) [PubMed] [Europe PMC] [Abstract]
    Annotation: TAZ negatively regulate transcription of DeltaNp63 through TEAD1 2 3 and 4 transcription factors.Imported.
    Source: GeneRIF:7004.

    This publication is mapped to 21 other entries.

  24. 24
    "RTEF-1 protects against oxidative damage induced by H2O2 in human umbilical vein endothelial cells through Klotho activation."
    Sun S., Cheng B., Sun P.G., Wu X.H., Wu Q.Q., He P.
    Exp. Biol. Med. (Maywood) 240:1606-1613(2015) [PubMed] [Europe PMC] [Abstract]
    Annotation: potential anti-oxidation gene and can prevent H2O2-induced endothelial cell oxidative damage by activating KlothoImported.
    Source: GeneRIF:7004.

    This publication is mapped to 4 other entries.

  25. 25
    "Increased TEAD4 expression and nuclear localization in colorectal cancer promote epithelial-mesenchymal transition and metastasis in a YAP-independent manner."
    Liu Y., Wang G., Yang Y., Mei Z., Liang Z., Cui A., Wu T., Liu C.Y., Cui L.
    Oncogene 35:2789-2800(2016) [PubMed] [Europe PMC] [Abstract]
    Annotation: The transcription factor TEAD4 regulates a pro-metastasis transcription program in a YAP-independent manner in CRC thus providing a novel mechanism of TEAD4 transcriptional regulation and its oncogenic role in CRC independently of the Hippo pathway.Imported.
    Source: GeneRIF:7004.

    This publication is mapped to 4 other entries.

1 to 25 of 33  Show