Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes.

Johnson J.D., Mehus J.G., Tews K., Milavetz B.I., Lambeth D.O.

Highly ATP- and GTP-specific isoforms of succinyl-CoA synthetase in pigeon incorporate the same alpha-subunit, but different beta-subunits (Johnson, J. D., Muhonen, W. W., and Lambeth, D. O. (1998) J. Biol. Chem. 273, 27573-27579). The sequences of the mature subunits were determined by methods based on reverse transcription-polymerase chain reaction. The 306-residue mature alpha-subunit in pigeon shows >88% identity to its homologues in pig and rat. The sequences of the mature ATP- and GTP-specific beta-subunits (A-beta and G-beta, respectively) in pigeon are 54% identical. These sequences were used to identify expressed sequence tags for human and mouse that were highly homologous to G-beta and A-beta, respectively. The sequences for mature A-beta and G-beta in mouse and human were completed and verified by polymerase chain reaction. The sequence of A-beta in pig was also obtained. The mammalian A-beta sequences show >89% identity to each other; the G-beta sequences are similarly related. However, pairwise comparisons of the A-beta and G-beta sequences revealed <53% identity. Alignment with two sequences of the beta-subunit in Caenorhabditis elegans suggests that the A-beta and G-beta genes arose by duplication early in the evolution of multicellular eucaryotes. The expression of A-beta is strong in numerous mouse and human tissues, which suggests that ATP-specific succinyl-CoA synthetase also plays an important role in species throughout the animal kingdom.

J. Biol. Chem. 273:27580-27586(1998) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health