Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family.

Mastroberardino L., Spindler B., Pfeiffer R., Skelly P.J., Loffing J., Shoemaker C.B., Verrey F.

Amino-acid transport across cellular plasma membranes depends on several parallel-functioning (co-)transporters and exchangers. The widespread transport system L accounts for a sodium-independent exchange of large, neutral amino acids, whereas the system y(+)L exchanges positively charged amino acids and/or neutral amino acids together with sodium. The molecular nature of these transporters remains unknown, although expression of the human cell-surface glycoprotein 4F2 heavy chain (h4F2hc; CD98 in the mouse) is known to induce low levels of L-and/or y(+)L-type transport. This glycoprotein is found in activated lymphocytes, together with an uncharacterized, disulphide-linked lipophilic light chain with an apparent relative molecular mass of 40,000 (M(r) 40K). Here we identify the permease-related protein E16 as the first light chain of h4F2hc and show that the resulting heterodimeric complex mediates L-type amino-acid transport. The homologous protein from Schistosoma mansoni, SPRM1, also associates covalently with coexpressed h4F2hc glycoprotein, although it induces amino-acid transport of different substrate specificity. The coexpression of h4F2hc is required for surface expression of these permease-related light chains, which belong to a new family of amino-acid transporters that form heterodimers with cell-surface glycoproteins.

Nature 395:288-291(1998) [PubMed] [Europe PMC]

Cookie policy

We would like to use anonymized google analytics cookies to gather statistics on how is used in aggregate. Learn more

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health