Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

CYP4B1 activates 4-ipomeanol in rat lung.

Verschoyle R.D., Philpot R.M., Wolf C.R., Dinsdale D.

Inhibition of pulmonary CYP4B1 activity by pretreatment of rats with p-xylene decreased the ability of lung microsomes to N-hydroxylate 2-aminofluorene and prevented the lung damage normally seen after dosing with ipomeanol. The toxicity of ipomeanol, as assessed by acute lethality, was decreased by a factor of eight. In contrast, induction of CYP1A1 by Aroclor or beta-naphthoflavone, or inhibition of CYP2B1 by O,O,S-trimethyl-phosphorodithioate, as assessed by measurement of lung microsomal dealkylation of ethoxyresorufin or pentoxyresorufin, did not change ipomeanol toxicity. A polyclonal antibody raised against CYP4B1 prevented the covalent binding of [14C]-ipomeanol to lung microsomal protein in vitro. Antibodies raised against the other major P450 isozymes of rat lung, CYP2B1 and CYP1A1, had no effect on this binding. Aroclor, beta-naphthoflavone, and O,O,S-trimethylphosphorodithioate failed to affect binding of radiolabeled ipomeanol in vivo, but pretreatment with p-xylene resulted in a significant reduction in this binding. The CYP4B1 substrate 2-aminofluorene, when dosed to rats, caused a sixfold decrease in ipomeanol toxicity. These results indicate that in the rat, unlike the rabbit, pulmonary bioactivation of ipomeanol is predominantly dependent upon CYP4B1.

Toxicol. Appl. Pharmacol. 123:193-198(1993) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health