Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Activation of protein kinase C by purified bovine brain 14-3-3: comparison with tyrosine hydroxylase activation.

Tanji M., Horwitz R., Rosenfeld G., Waymire J.C.

In the course of the purification of 14-3-3 protein (14-3-3) we found that 14-3-3 isolated from bovine forebrain activates protein kinase C (PKC), rather than the previously reported protein kinase C inhibitory activity (KCIP). We have characterized the 14-3-3 activation of PKC. The physical properties of purified PKC activator are the same as those previously reported for 14-3-3 and KCIP; i.e., (1) it is composed of subunits of molecular weight 32,000, 30,000, and 29,000; (2) it is homogeneous with respect to molecular weight, as judged by native gradient-gel electrophoresis, with a molecular weight of 53,000; and (3) it is composed of at least six isoforms when analyzed by reverse-phase HPLC. The concentration dependence of PKC activation by 14-3-3 is in the same range as that shown previously for KCIP inhibition of PKC, and as that required for 14-3-3 activation of tyrosine hydroxylase; a maximal stimulation of two-to three-fold occurs at 40-100 micrograms/ml. 14-3-3's activation of PKC is sensitive to alpha-chymotrypsin digestion but is not heat labile. Activation is specific to PKC; at least two other protein kinases, cyclic AMP- and calcium/calmodulin-dependent protein kinases, are not activated. The activation of PKC by 14-3-3 is independent of phosphatidylserine and calcium and, as such, is an alternative mechanism for the activation of PKC that obviates its translocation to membranes.

J. Neurochem. 63:1908-1916(1994) [PubMed] [Europe PMC]