Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts.

Baltz A.G., Munschauer M., Schwanhausser B., Vasile A., Murakawa Y., Schueler M., Youngs N., Penfold-Brown D., Drew K., Milek M., Wyler E., Bonneau R., Selbach M., Dieterich C., Landthaler M.

Protein-RNA interactions are fundamental to core biological processes, such as mRNA splicing, localization, degradation, and translation. We developed a photoreactive nucleotide-enhanced UV crosslinking and oligo(dT) purification approach to identify the mRNA-bound proteome using quantitative proteomics and to display the protein occupancy on mRNA transcripts by next-generation sequencing. Application to a human embryonic kidney cell line identified close to 800 proteins. To our knowledge, nearly one-third were not previously annotated as RNA binding, and about 15% were not predictable by computational methods to interact with RNA. Protein occupancy profiling provides a transcriptome-wide catalog of potential cis-regulatory regions on mammalian mRNAs and showed that large stretches in 3' UTRs can be contacted by the mRNA-bound proteome, with numerous putative binding sites in regions harboring disease-associated nucleotide polymorphisms. Our observations indicate the presence of a large number of mRNA binders with diverse molecular functions participating in combinatorial posttranscriptional gene-expression networks.

Mol. Cell 46:674-690(2012) [PubMed] [Europe PMC]