Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The finger domain of simian virus 40 large T antigen controls DNA-binding specificity.

Hoess A., Moarefi I.F., Fanning E., Arthur A.K.

The specificity and regulation of protein-DNA interactions play a crucial role in all aspects of communication between genotype and phenotype in a cell. The large T antigen of simian virus 40 binds to identical, yet quite differently arranged, pentanucleotide motifs in the simian virus 40 control region, sites I and II. Wild-type T antigen preferentially binds site I. We demonstrate that a bacterial peptide encoding residues 1 to 259 (T260) includes the essential amino acids required for binding to both DNA sites but predominantly binds site II. However, a longer peptide (residues 1 to 369; T370) binds almost exclusively to site I. Thus, the addition of amino acids 260 to 369 to the T260 peptide results in the loss of site II binding. This region includes a single putative metal-binding region, and mutation of T370 at either conserved cysteine of the finger results in equal but inefficient binding to both sites. While no metal binding has been shown to be directly associated with this sequence, these results suggest a novel, perhaps structural, function for such a finger motif, since this domain of T antigen appears to play a crucial role in modulating the DNA-binding behavior of T-antigen peptides.

J. Virol. 64:6291-6296(1990) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health