Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Dissociation of epidermal growth factor receptor and ErbB2 heterodimers in the presence of somatostatin receptor 5 modulate signaling pathways.

Kharmate G., Rajput P.S., Watt H.L., Somvanshi R.K., Chaudhari N., Qiu X., Kumar U.

Epidermal growth factor through the stimulation of epidermal growth factor receptor (EGFR) plays a critical role in the activation of MAPKs and phosphatidylinositol-3-protein kinase/AKT cell survival pathways attributed in many pathological conditions. At the cellular level, such functions involve EGFR overactivation and phosphorylation. In the present study, we describe that human embryonic kidney-293 cells transfected with somatostatin (SST) receptor 5 (SSTR5) exhibit inhibition of EGFR phosphorylation and modulate MAPK and phosphatidylinositol-3-protein kinase/AKT cell survival signaling. Furthermore, suppression of EGFR by using small interference RNA and an antagonist (AG1478) potentiates the SST effect via activation of SSTR5 on signaling molecules. In wild-type human embryonic kidney-293 cells, EGFR/ErbB2 exists as constitutive heterodimers. The presence of SSTR5 leads to the dissociation of the heteromeric complex of EGFR/ErbB2 and display preferential heterodimerization between SSTR5 and EGFR in an agonist-dependent manner. These findings highlight a new undiscovered mechanism and potential role of SSTR5 to attenuate the EGFR-mediated signaling pathways involved in tumorigenesis. Our data indicate that the activation and/or overexpression of SST receptors along with the inhibition of EGFR will serve as an important therapeutic approach in the treatment of ErbB-positive tumors.

Endocrinology 152:931-945(2011) [PubMed] [Europe PMC]