Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Endosomal NADPH oxidase regulates c-Src activation following hypoxia/reoxygenation injury.

Li Q., Zhang Y., Marden J.J., Banfi B., Engelhardt J.F.

c-Src has been shown to activate NF-kappaB (nuclear factor kappaB) following H/R (hypoxia/reoxygenation) by acting as a redox-dependent IkappaBalpha (inhibitory kappaB) tyrosine kinase. In the present study, we have investigated the redox-dependent mechanism of c-Src activation following H/R injury and found that ROS (reactive oxygen species) generated by endosomal Noxs (NADPH oxidases) are critical for this process. Endocytosis following H/R was required for the activation of endosomal Noxs, c-Src activation, and the ability of c-Src to tyrosine-phosphorylate IkappaBalpha. Quenching intra-endosomal ROS during reoxygenation inhibited c-Src activation without affecting c-Src recruitment from the plasma membrane to endosomes. However, siRNA (small interfering RNA)-mediated knockdown of Rac1 prevented c-Src recruitment into the endosomal compartment following H/R. Given that Rac1 is a known activator of Nox1 and Nox2, we investigated whether these two proteins were required for c-Src activation in Nox-deficient primary fibroblasts. Findings from these studies suggest that both Nox1 and Nox2 participate in the initial redox activation of c-Src following H/R. In summary, our results suggest that Rac1-dependent Noxs play a critical role in activating c-Src following H/R injury. This signalling pathway may be a useful therapeutic target for ischaemia/reperfusion-related diseases.

Biochem. J. 411:531-541(2008) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health