Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex.

Lo S.-C., Hannink M.

Keap1 is a BTB-Kelch substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex that functions as a sensor for thiol-reactive chemopreventive compounds and oxidative stress. Inhibition of Keap1-dependent ubiquitination of the bZIP transcription factor Nrf2 enables Nrf2 to activate a cyto-protective transcriptional program that counters the damaging effects of oxidative stress. In this report we have identified a member of the phosphoglycerate mutase family, PGAM5, as a novel substrate for Keap1. The N terminus of the PGAM5 protein contains a conserved NXESGE motif that binds to the substrate binding pocket in the Kelch domain of Keap1, whereas the C-terminal PGAM domain binds Bcl-X(L). Keap1-dependent ubiquitination of PGAM5 results in proteasome-dependent degradation of PGAM5. Quinone-induced oxidative stress and the chemopreventive agent sulforaphane inhibit Keap1-dependent ubiquitination of PGAM5. The identification of PGAM5 as a novel substrate of Keap1 suggests that Keap1 regulates both transcriptional and post-transcriptional responses of mammalian cells to oxidative stress.

J. Biol. Chem. 281:37893-37903(2006) [PubMed] [Europe PMC]