Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Structural analysis of human liver glyceraldehyde-3-phosphate dehydrogenase.

Ismail S.A., Park H.W.

The crystal structure of human liver glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been determined. This structure represents the first moderate-resolution (2.5 A) and crystallographically refined (Rfree = 22.9%) human GAPDH structure. The liver GAPDH structure consists of a homotetramer, each subunit of which is bound to a nicotinamide adenine dinucleotide (NAD+) molecule. The GAPDH enzyme has glycolytic and non-glycolytic functions, both of which are of chemotherapeutic interest. The availability of a high-quality human GAPDH structure is a necessity for structure-based drug design. In this study, structural differences between human liver and skeletal muscle GAPDHs are reported in order to understand how these two enzymes might respond to anti-trypanosomatid GAPDH inhibitors.

Acta Crystallogr. D 61:1508-1513(2005) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health