Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Phosphorylation of Grb10 by mitogen-activated protein kinase: identification of Ser150 and Ser476 of human Grb10zeta as major phosphorylation sites.

Langlais P., Wang C., Dong L.Q., Carroll C.A., Weintraub S.T., Liu F.

Grb10 is a Src-homology 2 (SH2) and Pleckstrin-homology (PH) domain-containing protein that binds to several autophosphorylated receptor tyrosine kinases including the insulin receptor (IR). Our previous studies showed that Grb10 underwent insulin-stimulated serine phosphorylation, yet the kinase(s) responsible for phosphorylation and the sites of the phosphorylation remain unknown. In this report, we show that Grb10 is a direct substrate of the p42/44 mitogen-activated protein kinase (MAPK). In addition, we found that inhibition of the MAPK signaling pathway reduced Grb10 phosphorylation in cells. Using site-directed mutagenesis, phosphopeptide mapping, and capillary HPLC-electrospray-tandem mass spectrometry analysis, we identified Ser(150), Ser(418), and Ser(476) of human Grb10zeta as MAPK-mediated in vitro phosphorylation sites. In vivo labeling and two-dimensional phosphopeptide mapping studies revealed that Ser(150) and Ser(476) of human Grb10zeta are phosphorylated in intact cells. Replacing Ser(150) and Ser(476) with alanines reduced the inhibitory effect of human Grb10zeta on insulin-stimulated IRS1 tyrosine phosphorylation. Taken together, our findings suggest that phosphorylation of the adaptor protein may provide a feedback inhibitory mechanism by which Grb10 regulates insulin signaling.

Biochemistry 44:8890-8897(2005) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health