Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Single amino acid (482) variants of the ABCG2 multidrug transporter: major differences in transport capacity and substrate recognition.

Oezvegy-Laczka C., Koebloes G., Sarkadi B., Varadi A.

The human ABCG2 protein is an ATP binding cassette half-transporter, which protects our cells and tissues against various xenobiotics, while overexpression of ABCG2 in tumor cells confers multidrug resistance. It has been documented that single amino acid changes at position 482 resulted in altered drug resistance and transport capacity. In this study, we have generated nine Arg-482 mutants (G, I, M, S, T, D, N, K, Y) of ABCG2, and expressed them in insect cells. All ABCG2 variants showed cell surface expression and, in isolated membranes, an ABCG2-specific ATPase activity. When methotrexate accumulation was measured in inside-out membrane vesicles, this transport was supported only by the wild-type ABCG2. In intact cells, mitoxantrone was transported by all ABCG2 variants, except by R482K. Rhodamine 123 was extruded by most of the mutants, except by R482K, Y and by wild-type ABCG2. Hoechst 33342 was pumped out from cells expressing the wild-type and all Arg-482 variants, but not from those expressing R482K and Y. Our study demonstrates that the substrate specificity of the Arg (wild-type) form is unique and that amino acid replacements at position 482 induce major alterations in both the transport activity and substrate specificity of this protein.

Biochim. Biophys. Acta 1668:53-63(2005) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health