Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Cardiac function in mice lacking the glucagon-like peptide-1 receptor.

Gros R., You X., Baggio L.L., Kabir M.G., Sadi A.M., Mungrue I.N., Parker T.G., Huang Q., Drucker D.J., Husain M.

Glucagon-like peptide-1 (GLP-1) acts via its G protein-coupled receptor (GLP-1R) to regulate blood glucose. Although the GLP-1R is widely expressed in peripheral tissues, including the heart, and exogenous GLP-1 administration increases heart rate and blood pressure in rodents, the physiological importance of GLP-1R action in the cardiovascular system remains unclear. We now show that 2-month-old mice with genetic deletion of the GLP-1R (GLP-1R(-/-)) exhibit reduced resting heart rate and elevated left ventricular (LV) end diastolic pressure compared with CD-1 wild-type controls. At the age of 5 months, echocardiography and histology demonstrate increased LV thickness in GLP-1R(-/-) mice. Although baseline hemodynamic parameters of GLP-1R(-/-) did not differ significantly from those of wild type, GLP-1R(-/-) mice displayed impaired LV contractility and diastolic function after insulin administration. The defective cardiovascular response to insulin was not attributable to a generalized defect in the stress response, because GLP-1R(-/-) mice responded appropriately to insulin with increased c-fos expression in the hypothalamus and increased circulating levels of glucagon and epinephrine. Furthermore, LV contractility after exogenous epinephrine infusion was also reduced in GLP-1R(-/-) mice. These findings provide new evidence implicating an essential role for GLP-1R in the control of murine cardiac structure and function in vivo.

Endocrinology 144:2242-2252(2003) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health