Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

SV40 large T antigen hexamer structure: domain organization and DNA-induced conformational changes.

VanLoock M.S., Alexandrov A., Yu X., Cozzarelli N.R., Egelman E.H.

Simian Virus 40 replication requires only one viral protein, the Large T antigen (T-ag), which acts as both an initiator of replication and as a replicative helicase (reviewed in ). We used electron microscopy to generate a three-dimensional reconstruction of the T-ag hexameric ring in the presence and absence of a synthetic replication fork to locate the T-ag domains, to examine structural changes in the T-ag hexamer associated with DNA binding, and to analyze the formation of double hexamers on and off DNA. We found that binding DNA to the T-ag hexamer induces large conformational changes in the N- and C-terminal domains of T-ag. Additionally, we observed a significant increase in density throughout the central channel of the hexameric ring upon DNA binding. We conclude that conformational changes in the T-ag hexamer are required to accommodate DNA and that the mode of DNA binding may be similar to that suggested for some other ring helicases. We also identified two conformations of T-ag double hexamers formed in the presence of forked DNA: with N-terminal hexamer-hexamer contacts, similar to those formed on origin DNA, or with C-terminal contacts, which are unlike any T-ag double hexamers reported previously.

Curr. Biol. 12:472-476(2002) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health