Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Tyrosine phosphorylation of the beta-amyloid precursor protein cytoplasmic tail promotes interaction with Shc.

Tarr P.E., Roncarati R., Pelicci G., Pelicci P.G., D'Adamio L.

beta-Amyloid precursor protein (APP) is a widely expressed transmembrane protein of unknown function that is involved in the pathogenesis of Alzheimer's disease. The cytoplasmic tail of APP interacts with phosphotyrosine binding (PTB) domain containing proteins (Fe65, X11, mDab-1, and JIP-1) and may modulate gene expression and apoptosis. We now identify Shc A and Shc C, PTB-containing adapter proteins that signal to cellular differentiation and survival pathways, as novel APP-interacting proteins. The APP cytoplasmic tail contains a PTB-binding motif (Y(682)ENPTY(687)) that, when phosphorylated on Tyr(682), precipitated the PTB domain of Shc A and Shc C, as well as endogenous full-length Shc A. APP and Shc C were physically associated in adult mouse brain homogenates. Increase in phosphorylation of APP by overexpression of the nerve growth factor receptor Trk A in 293T cells promoted the interaction of transfected APP and endogenous Shc A. Pervanadate treatment of N2a neuroblastoma cells resulted in tyrosine phosphorylation and association of endogenous APP and Shc A. Thus, APP and Shc proteins interact in vitro, in cells, and in the mouse brain. Tyrosine phosphorylation of APP may promote the interaction with Shc proteins.

J. Biol. Chem. 277:16798-16804(2002) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health