Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Perinatal hypophosphatasia: radiology, pathology and molecular biology studies in a family harboring a splicing mutation (648+1A) and a novel missense mutation (N400S) in the tissue-nonspecific alkaline phosphatase (TNSALP) gene.

Sergi C., Mornet E., Troeger J., Voigtlaender T.

We report on a postmortem diagnosis of perinatal lethal hypophosphatasia, an inborn error of metabolism characterized by a liver/bone/kidney alkaline phosphatase (ALP)-related defective bone mineralization due to mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene. Radiological and pathological studies identified a perinatal lethal hypophosphatasia showing a generalized bone mineralization defect including asymmetry of the cervical vertebral arches in a 22 +4 weeks' gestation fetus. Both parents revealed low serum ALP activities supporting the diagnosis. Sequencing analysis of the TNSALP gene showed two heterozygous mutations, 648+1A, a mutation affecting the donor splice site in exon 6, and N400S, a novel missense mutation in exon 11, located near the active site and very close to histidins 364 and 437, two crucial residues of the active site. Sequencing of exons 6 and 11 in the parents showed that 648+1A was from maternal origin and N400S from paternal origin. DNA-based prenatal testing in the subsequent pregnancy following a chorionic villous sampling performed at 10 weeks of gestation showed no mutation and a healthy infant was born at term.

Am. J. Med. Genet. 103:235-240(2001) [PubMed] [Europe PMC]

Cookie policy

We would like to use anonymized google analytics cookies to gather statistics on how uniprot.org is used in aggregate. Learn more

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health