Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

A point mutation in the IL-12R beta 2 gene underlies the IL-12 unresponsiveness of Lps-defective C57BL/10ScCr mice.

Poltorak A., Merlin T., Nielsen P.J., Sandra O., Smirnova I., Schupp I., Boehm T., Galanos C., Freudenberg M.A.

Lps-defective C57BL/10ScCr (Cr) mice are homozygous for a deletion encompassing Toll-like receptor 4 that makes them refractory to the biological activity of LPS. In addition, these mice exhibit an inherited IL-12 unresponsiveness resulting in impaired IFN-gamma responses to different microorganisms. By positional cloning methods, we show here that this second defect of Cr mice is due to a mutation in a single gene located on mouse chromosome 6, in close proximity to the Igkappa locus. The gene is IL-12Rbeta2. Cr mice carry a point mutation creating a stop codon that is predicted to cause premature termination of the translated IL-12Rbeta2 after a lysine residue at position 777. The truncated beta2 chain can still form a heterodimeric IL-12R that allows phosphorylation of Janus kinase 2, but, unlike the wild-type IL-12R, can no longer mediate phosphorylation of STAT4. Because the phosphorylation of STAT4 is a prerequisite for the IL-12-mediated induction of IFN-gamma, its absence in Cr mice is responsible for their defective IFN-gamma response to microorganisms.

J. Immunol. 167:2106-2111(2001) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health