Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Fibulin-1 binds the amino-terminal head of beta-amyloid precursor protein and modulates its physiological function.

Ohsawa I., Takamura C., Kohsaka S.

Genetic studies have implicated amyloid precursor protein (APP) in the pathogenesis of Alzheimer's disease. While accumulating lines of evidence indicate that APP has various functions in cells, little is known about the proteins that modulate its biological activity. Toward this end, we employed a two-hybrid system to identify potential interacting factors. We now report that fibulin-1, which contains repetitive Ca(2+)-binding EGF-like elements, binds to APP at its amino-terminal growth factor-like domain, the region that is responsible for its neurotrophic activities. Fibulin-1 expression in the brain is confined to neurons, and is not expressed significantly by astrocytes or microglia. Direct binding of fibulin-1 to the secreted form of APP (sAPP) was demonstrated with a pull-down assay using fragments of both fibulin-1 fused with glutathione-S transferase and sAPP, produced in bacteria and yeast, respectively. The fibulin-1/sAPP heteromer was shown to form in the conditioned medium of transfected COS-7 cells. Furthermore, fibulin-1 blocks sAPP-mediated proliferation of primary cultured rat neural stem cells. These results suggest that fibulin-1 may play a significant role in modulating the neurotrophic activities of APP.

J. Neurochem. 76:1411-1420(2001) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health