Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells.

Liao D.F., Jin Z.G., Baas A.S., Daum G., Gygi S.P., Aebersold R., Berk B.C.

Reactive oxygen species have been implicated in the pathogenesis of atherosclerosis and hypertension, in part by promoting vascular smooth muscle cell (VSMC) growth. We have previously shown that LY83583, a generator of O-(2), activated extracellular signal-regulated kinases (ERK1/2) with early (10 min) and late (2 h) peaks and stimulated VSMC growth. To investigate whether secreted oxidative stress-induced factors (termed SOXF) from VSMC were responsible for late ERK1/2 activation in response to LY83583, we purified putative SOXF proteins from conditioned medium (2 h of LY83583 exposure) by sequential chromatography based on activation of ERK1/2. Proteins identified by capillary chromatography, electrospray ionization tandem mass spectrometry, and data base searching included heat shock protein 90-alpha (HSP90-alpha) and cyclophilin B. Western blot analysis of conditioned medium showed specific secretion of HSP90-alpha but not HSP90-beta. Immunodepletion of HSP90-alpha from conditioned medium significantly inhibited conditioned medium-induced ERK1/2 activation. Human recombinant HSP90-alpha reproduced the effect of conditioned medium on ERK1/2 activation. These results show that brief oxidative stress causes sustained release of protein factors from VSMC that can stimulate ERK1/2. These factors may be important mediators for the effects of reactive oxygen species on vascular function.

J. Biol. Chem. 275:189-196(2000) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health